A New Class of Alternative Theorems for SOS-Convex Inequalities and Robust Optimization∗

نویسندگان

  • V. Jeyakumar
  • G. Li
چکیده

In this paper we present a new class of theorems of the alternative for SOS-convex inequality systems without any qualifications. This class of theorems provides an alternative equations in terms of sums of squares to the solvability of the given inequality system. A strong separation theorem for convex sets, described by convex polynomial inequalities, plays a key role in establishing the class of alternative theorems. Consequently, we show that the optimal values of various classes of robust convex optimization problems are equal to the optimal values of related semidefinite programming problems (SDPs) and so, the value of the robust problem can be found by solving a single SDP. The class of problems includes programs with SOS-convex polynomials under data uncertainty in the objective function such as uncertain quadratically constrained quadratic programs. The SOS-convexity is a computationally tractable relaxation of convexity for a real polynomial. We also provide an application of our theorem of the alternative to a multi-objective convex optimization under data uncertainty.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite-Hadamard Type Inequalities for MφA-Convex Functions

This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...

متن کامل

Robust SOS-Convex Polynomial Programs: Exact SDP Relaxations

This paper studies robust solutions and semidefinite linear programming (SDP) relaxations of a class of convex polynomial optimization problems in the face of data uncertainty. The class of convex optimization problems, called robust SOS-convex polynomial optimization problems, includes robust quadratically constrained convex optimization problems and robust separable convex polynomial optimiza...

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

Linear Time Varying MPC Based Path Planning of an Autonomous Vehicle via Convex Optimization

In this paper a new method is introduced for path planning of an autonomous vehicle. In this method, the environment is considered cluttered and with some uncertainty sources. Thus, the state of detected object should be estimated using an optimal filter. To do so, the state distribution is assumed Gaussian. Thus the state vector is estimated by a Kalman filter at each time step. The estimation...

متن کامل

Robust nonlinear optimization via the dual

Robust nonlinear optimization is not as well developed as the linear case, and limited in the constraints and uncertainty sets it can handle. In this work we extend the scope of robust optimization by showing how to solve a large class of robust nonlinear optimization problems. The fascinating and appealing property of our approach is that any convex uncertainty set can be used. We give an expl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013